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Drop formation during coating of vertical fibres 
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When the coating film around a vertical fibre exceeds a critical thickness he, the 
interfacial disturbances triggered by Rayleigh instability can undergo accelerated 
growth such that localized drops much larger in dimension than the film thickness 
appear. We associate the initial period of this strongly nonlinear drop formation 
phenomenon with a self-similar intermediate asymptotic blow-up solution to the long- 
wave evolution equation which describes how static capillary forces drain fluid into the 
drop. Below he, we show that strongly nonlinear coupling between the mean flow and 
axial curvature produces a finite-amplitude solitary wave solution which prevents local 
finite-time blow up and hence disallows further growth into drops. We thus estimate 
he by determining the existence of solitary wave solutions. This is accomplished by a 
matched asymptotic analysis which joins the capillary outer region of a large solitary 
wave to the thin-film inner region. Our estimate of he = 1 . 6 8 R 3 K 2 ,  where R is the fibre 
radius and H is the capillary length H = (o/pg)i, is favourably compared to 
experimental data. 

1. Introduction 
An important phenomenon in the coating of wire or fibres is the break up of the thin 

annular film into drops (see figure 1). The physical mechanism that drives this drop 
formation process is the classical Rayleigh instability for cylindrical interfaces. The 
same capillary instability, induced initially by azimuthal curvature variation in the 
axial direction, also causes liquid jet break up, snap-off of lubricated air threads (Aul 
& Olbricht 1990) or break up of the annular film into lobes in capillaries (Hammond 
1983; Frenkel et al. 1987). It is an azimuthally symmetric instability with a 
characteristic axial wavelength of 

A, = 2~ d 2 R ,  (1) 

where R is the radius of the cylindrical interface. 
In a recent study of the drop formation process in coating flow by QuCrC (1990), a 

unique nonlinear saturation phenomenon is observed. If the coating film is below a 
critical film thickness h,, which is found to scale as R3, the Rayleigh instability seems 
to be saturated by nonlinear effects associated with the mean flow such that the 
disturbances do not grow unarrested as in the case of jet and annular film break up, 
and air thread snap-off. Instead, small-amplitude interfacial waves were observed. It is 
only beyond h, that one observes the unbounded growth into drops which have a 
characteristic height as large as the wavelength A,. 

A simple scaling argument by Frenkel(l992) offers some insight into how this mean- 
flow nonlinear saturation process occurs for coating flow. Using the usual long-wave 
expansion, and assuming creeping flow conditions, thin liquid films and strong 



136 S. Kalliadasis and H.-C. Chang 
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FIGURE 1. Schematic of saturated interfacial waves on a fibre with a thin film ( p  < p,) and the 
formation of large drops with a thick film (J > p,). 

capillary effects (W 9 I), he has derived the following evolution equation for the 
axisymmetric interface around a fibre, 

2 W2h3h,,,] = 0 

where h has been scaled with respect to the spatially averaged thickness h,, the axial 
coordinate x by A, and t by the convective timescale an interfacial particle transverses 
one wavelength A,, 7, = ( 2 4  v/ghi). The other parameters are the film parameter 
E = ha/& 4 1 which is also the expansion parameter, the Weber number 

W = o/pghg - O(eC2) 

and the dimensionless fibre radius a = R/ha - O(6-l). In (2), the second term is the 
convective term due to mean flow while the third and fourth terms correspond to 
azimuthal and axial curvatures respectively. The azimuthal curvature term is 
destabilizing while the axial curvature term is stabilizing as one can easily decipher 
from a weakly nonlinear expansion of (2)  

h - l + h ,  
where h - O(e), 

ah ah "ah 2+( c)a2h +a3- = 0, 
at  ax ax 3 a' ax2 
-+2-+4h-+- - - 

(3) 

(4)  

which can be rescaled into the Kuramoto-Sivashinsky equation in (6). Cheng & Chang 
(1992) have shown that the prediction from the linearized version of (4) (or (2))  for 
infinitesimal waves near inception, a critical wavelength of A, and a phase speed twice 
the interfacial velocity 2(ghi/2v), are in good agreement with the inception data for 
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small cylinders with dominant capillary effects and with the numerical result from the 
linearized equation of motion at low Reynolds number and high surface tension. 
Saturation of this linear growth must then involve a balance of the nonlinear 
convective term &(&$/ax) with the two curvature terms. Note that, in both (2) and (4), 
this convective term contains an odd derivative which breaks the x + - x symmetry. 
Physically, this causes an asymmetric steepening of the wave front in the x-direction as 
the wave grows, since higher interfacial positions travel faster. This mechanism 
increases the axial curvature and hence balances the destabilizing azimuthal curvature 
term. The same mechanism is also in play in (2) but it is then strongly nonlinear. One 
can render this balance of the asymmetric convective and symmetric curvature terms 
more precise by rescaling time and spatial coordinates, 

x+ W - k l x ,  ( 5  a) 

( 5  b )  t+ZW-L -1 
3 313 4 

to yield the weakly nonlinear version 

a& a& 
-++-++h-++ph,,+h,,,, at ax ax = 0, 

and the fully nonlinear equation 

where p = Wi/a2 .  (8) 
The strongly nonlinear equation (7) reduces to Hammond’s equation (Hammond 
1983) for annular films in a capillary without the mean flow term (h3),. The weakly 
nonlinear version (6) becomes the Kuramoto-Sivashinsky equation after a moving- 
coordinate transformation to remove the linear convective term 3(a&/ax). The factor 
of 3 results from the transformation ( 5 )  which implies that an infinitesimally small 
wave travels at a phase speed three times the mean velocity or twice the interfacial 
velocity. 

For nonlinear saturation by mean flow to be effective, the mean-flow, axial and 
azimuthal curvature terms in (6) and (7) must balance. Consequently, /3 should be of 
order unity which yields the scaling law observed by Quere (1990) and first explained 
by Frenkel (1992), 

where H = (n/pg)i is the capillary lengthscale. Since this nonlinear saturation 
mechanism is induced by the mean flow due to viscous gravitational drainage, it is 
absent in horizontal fibres, inviscid liquid jets and annular films in capillaries without 
primary flow. In the last case, the annular film either breaks up into symmetric lobes 
with each lobe described by (Hammond 1983) 

h, N R3H-‘, (9) 

h = A(l +cos/$x), (10) 

which corresponds to a long-wave expansion of the unduloid solution family to the 
Laplace-Young equation. The interface simply evolves through each member of an 
unduloid family parameterized by A. The above argument then suggests that if viscous 
flow is also induced in these systems, the above phenomenon can be prevented. This 
has been qualitatively verified by the experiment of Aul & Olbricht (1990) and the 
scaling arguments of Frenkel et al. (1987) for annular films in a capillary. It is also 
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related to Russo & Steen’s observation (1989) that viscous shear can stabilize the 
Rayleigh instability of a liquid cylinder. 

Several assumptions have been invoked in the derivation of (7). We shall examine 
some of them next. An important omitted effect is inertia which is the dominant 
destabilizing mechanism for falling film on a plane or a large cylinder where Rayleigh 
azimuthal instability is weak. It is then pertinent to determine how thin the fibre should 
be before inertia can be safely neglected. As derived in detail by Lin (1974), the leading- 
order streamwise velocity u, in any interfacial lubrication flow falling under gravity low 
Reynolds number and long waves scales as pgh:/,u. The next order correction u, in 
velocity in the expansion in the film parameter e then contains an inhomogeneous part 
owing to the contribution of the leading-order term through the nonlinear inertia term. 
This inhomogeneous term is of the order p(pghi/p)2/1 where Z is the characteristic 
wavelength (e = h,/Z here). The velocity correction due to inertia is then of order 
(g2h:/lv3). In the final evolution equation for h, it is this inertia-induced second-order 
velocity that provides the destabilizing growth term @/ax) j: u1 dy which yields a film 
growth rate of order (hi g2/l2v3). For saturated waves in high-surface-tension fluid, 
this inertia instability is arrested by the same axial curvature term in (2) which scales 
as (vh;/pZ4). Balance of these two terms then yields a characteristic wavelength for 
inertia instability in falling films 

and a characteristic film growth rate of 

1 = Hv/(gh$, (1 1) 

rl = (hi0g3/H2v5). (12) 

For Rayleigh-instability-dominated films on thin fibres, the characteristic wavelength 
is A, - R in (1) and the Rayleigh growth rate is 

Balancing rI and rR, one obtains a critical R* below which (R + R*) inertia can be 
neglected 

which is simply a balance of the capillary lengthscale A, N R with the inertia dominated 
lengthscale 1. In a continuously falling film with a constant flow rate Q supplied from 
the top h, = (3vQ/g)i. If one uses a Reynolds number Re to measure the flow rate, 
Re = Q / v ,  then h, = (3Rev2/g)i and R* = 1 = (H/3a)Re-i. For water, H - 2.7 mm and 
the inertia effect can be important for moderate flow rates (Re N O(1)) if the fibre 
radius is of the order of the capillary length. One then requires R + H for inertia to be 
negligible. In most coating flows, however, the film is applied by running the fibre or 
plane through a pool of liquid in a ‘drag-out’ (Wilson 1982) or ‘drag-in’ process 
(Wilson & Jones 1983). For the drag-out process, the film thickness scales as RCai 
owing to a balance of viscous and capillary effects as in the Bretherton problem 
(Bretherton 1961). The scaling for coating film in the drag-in process is not known but 
it is typically very thin because of the possibility of air entrainment if the dragging 
speed U is too large. For the drag-out process, the critical R* of (14) becomes 
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where Cu = p U / a  is the capillary number corresponding to the dimensionless drag out 
speed. For QuCrC’s experiment with silicone oil H = 1.5 mm and v = 500 mm2 s-l, 
R,  = (Hv/g ip  - 0.23 cm while Cu is typically much less than unity ( - lopz)>. For water, 
R,  is 0.02 cm. Since cr/p is as high as lo4 cm/s for water, most industrial processes 
operate at Cu < 1 and any fibre coating process with fibres smaller than 0.5 cm in 
diameter can safely eliminate inertia as a cause for drop formation. Nevertheless, there 
can be a difference in the interfacial instabilities of continuous falling films and coating 
films in a drag-out process depending on the fibre radius. Because the film is extremely 
thin in the latter owing to a balance of capillary and viscous forces which yields the Cui 
scaling for the film height, inertia effect is negligible compared to the azimuthal 
capillary effect. 

Another assumption that should be scrutinized is the variation in time of the 
instantaneous average thickness h,. In fibres coated by the drag-out process, which was 
used by QuCrC, h, will decrease in time as the film drains. Since we will omit this 
dynamics in our quasi-steady formulation, the thinning rate of the film must be slow 
compared to the Rayleigh capillary growth rate rR in (13). The characteristic timescale 
for film growth due to the Rayleigh instability is 

7R = h,/rR = (,uR4/ah3, (16) 

while the characteristic velocity for thinning is ( g h 3 3 v )  and hence the characteristic 
time for the thinning of the film is 

7T = 2nRho/(gh:/3v), (17) 

which is consistent with the classical Reynolds lubrication thinning rate that scales as 
7;. Consequently, after inserting (9) for drop formation conditions, 

(18) 

which justifies the quasi-steady approximation. Actually, the Rayleigh growth rate in 
( 1 3 )  and (16) are underestimated because of the small-amplitude estimates. As we shall 
show, the nonlinear evolution rate of the drops is far larger than the estimates in ( 1 3 )  
and hence the quasi-steady approximation is even better than that indicated by (18). 
In QuCrC’s study, a typical experiment requires on the order of one day to drain which 
is consistent with our estimate 7T in (17) for a typical fibre radius of R = 0.15 mm 
under drop formation conditions of (9) but drops form in a matter of seconds or 
minutes while our estimate 7R yields about 1 h for fibres of the same radius after using 
(9) in (16). This also suggests an underestimate of the drop formation rate. 

Although the above scaling arguments provide the correct scaling for h, in (9), a 
quantitative estimate of the coefficient in front of the expression, like the celebrated 
Bretherton constant in h, - 1.337 RCu; (Bretherton 1961), requires a much more 
detailed analysis. Like break up of jets and annular films and snap-off of lubricated air 
threads in capillaries, a drop formation involves growth of the long wave length 
interfacial disturbances into extremely large structures. For thin vertical fibres with 
R 4 H,  these drops have characteristic heights and lengths of the order R as compared 
to the small-amplitude disturbances with heights much smaller than R when drops do 
not form (see figure 1). The latter saturated disturbances are always present. When R 
is larger and approaches H,  the drops will feel the effect of gravity as they grow and 
they will eventually resemble falling pendant drops. However, even in this case, the 
drops must first evolve through a stage when gravity is still unimportant but the drop 
height is already the same order as the wavelength. It is at this stage in both cases that 

(7R/7T) - 1/6n 4 1 
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the aspect ratio of the drop first becomes incompatible with the lubrication 
approximation that leads to the evolution equation (7). This then suggests that drop 
formation in both cases corresponds to unbounded solutions of (7). That is, if one 
integrates (7) under conditions that drops form, an initially small disturbance will grow 
without bound as a localized structure, possibly in finite time. Localized blow-up 
behaviour has been noticed in numerical studies of two-dimensional falling films on 
inclined planes (Pumir et al. 1983; Rosenau, Oron & Hyman 1992). However, drop 
formations are typically not observed as viscous falling films on planes or large 
cylinders. These waves tend to have small amplitudes and develop transverse variations 
(fingers, etc.), instead of forming drops. As a result, two-dimensional blow-up 
solutions are treated as mathematical curiosities for planar or near-planar films. It is 
quite likely that introduction of capillary-driven transverse variation for the planar film 
will relax this numerical blow-up phenomenon (Schwartz 1989). The situation is quite 
different for small-radius annular or cylindrical films, however. Accelerated break ups 
of such interfaces are commonly observed in the systems described earlier Gets, air 
threads in capillaries and fibre coating) and they all occur while retaining axisymmetry 
provided the radius is small enough. The extreme stability of non-axisymmetric 
disturbances of annular and cylindrical falling films has been studied by Shlang & 
Sivashinsky (1982) who showed that non-axisymmetric disturbances are only linearly 
stable if 

For continuously falling films with h, = (3Re v2/g) i ,  this yields 

which again requires the fibre radius to be small relative to the capillary length. 
condition is less stringent, however, for the drag-out process with h, - RCai, 

R < R*, 

where R* is given by (15). Since R* is extremely large for most drag-out processes, any 
fibre smaller than 0.5 cm can ignore non-axisymmetric disturbances as well as inertia. 
Consequently, the growing axisymmetric disturbances of a thin annular/cylindrical 
film cannot transfer its energy to non-axisymmetric disturbances as waves on a plane 
(R-too) do and can hence blow up while retaining its axisymmetry if they are not 
arrested by mean flow effects. Localized blow-up solutions of (2) are hence quite 
physical and are related to the drop formation process. In many finite-domain models, 
however, the finite amount of available liquid does not permit the blow-up structure 
to truly approach infinity in height. As a result, the blow-up solution is an intermediate 
asymptotic behaviour in time which is preceded by linear inception of the Rayleigh 
mechanism and followed by a slower drainage mechanism as the film thins. A blow- 
up behaviour that goes to completion in finite time can be achieved with more difficult 
and artificial boundary conditions that allow an infinite amount of liquid to develop 
within the domain in finite time. Nevertheless, even for domains with finite amount of 
available liquid we shall demonstrate both numerically and analytically that blow-up 
like accelerated growth occurs for a prolonged interval when p exceeds a critical value 
p, such that the final structure height is dramatically higher for /3 > p,. The determined 
p, is in excellent agreement with Qukre’s data for drop formation. It should also be 
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mentioned that the solution to the Kuramoto-Sivashinsky equation (6) can be shown 
to be always bounded. However, examination of the solution shows that the bounded 
deviation height h(x, t )  often takes on values in excess of unity which violates the 
weakly nonlinear approximation that leads to (6). This then points out that finite-time 
blow up is a strongly nonlinear phenomenon that escapes the quadratic weakly 
nonlinear description of mean-flow interaction offered by (6). It also emphasizes that 
the Kuramoto-Sivashinsky equation is only appropriate for saturated small-amplitude 
waves whose amplitude is much smaller than the film thickness. It is not even 
appropriate for saturated waves with amplitudes as large as the film thickness. We shall 
hence abandon (6) in favour of the strongly nonlinear evolution equation (7) in our 
analysis although (6) clearly provides the correct scaling argument for mean-flow 
saturation. 

In $2, we present a numerical study of (7) which demonstrates that intermediate 
asymptotic blow up persists for a long time for p beyond a critical value p,. Local 
structures which resemble static drops described by (10) grow unhindered until the 
long-wavelength approximation becomes invalid or until the growth is limited by the 
supply of liquid through a thin constriction at a ‘dimple’. Below /Ic, the interfacial 
disturbances tend to develop into identical local structures (coherent structures) with 
saturated amplitudes which translate laterally. Although there is no growth in the 
amplitude, these coherent structures can interact laterally such that the large-time 
asymptotic state remains time-dependent although there is no blow up. In $3 ,  we study 
the spatially localized blow-up solution analytically and show that it is an approximate 
self-similar solution to (7) whose normalized structure approaches the static solution 
described by (10). We also show that the coherent structures correspond to another 
self-similar solution, the solitary-wave solution. We argue that a family of solutions 
generated by the solitary waves dominates the dynamics such that all initial conditions 
approach this family of solutions locally instead of the blow-up solution. Growth into 
large drops is hence impossible. The intermediate blow-up behaviour is approached by 
some wave crests, however, when this solitary-wave solution does not exist. Spatially 
localized, finite-time blow up then occurs until it is arrested by the formation of a very 
thin dimple constriction in front of the blow-up structure. We hence focus our analysis 
on analytical and numerical construction of the solitary-wave solution in $4. It is 
shown that for p > p, = 1.41, the mean flow effect becomes insufficient to allow 
solitary waves to exist. This result is in excellent agreement with QuCri’s data for drop 
formation and without our numerical results for finite-time blow up. A conclusion is 
offered in $5 .  

During the course of this work, Kerchman & Frenkel(l993) have observed a specific 
mechanism for drop formation from their numerical experiments. They observed that 
drop formation seems to be triggered when two waves coalesce successively and 
inelastically and it does not happen if waves repel each other. We shall show numerical 
evidence that wave growth can also occur through drainage from the substrate film or 
from a smaller adjacent wave. In any case, all growth mechanisms seem to follow the 
blow-up solution initially. Hence, when blow up is suppressed by the solitary wavcs, 
growth towards drop formation is impossible by any mechanism. There is probably a 
link between repulsive wave (coherent structure) interaction and the blow-up behaviour 
but the connection is not clear. If one models the coherent structures by the solitary 
waves, as we have done in the falling film problem (Chang, Demekhin & Kopelevich 
1993b), repulsive wave interaction definitely cannot occur if there are no solitary 
waves, coalescence will probably appear instead. A more specific analysis in this 
direction will be presented in a subsequent paper. 
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2. Numerical study 
An extensive numerical study of (7) has been carried out using an implicit and quasi- 

linear Crank-Nicholson scheme. We impose periodic boundary conditions over a finite 
domain L that is much longer than the Rayleigh wavelength (A, - 2:np in the 
dimensionless coordinate x). For L = 50, the space and time steps are lower than 
Ax = At = 0.05 toensurenumericalstabilitywhichischecked by examining theconstancy 
of Jt h(x, t )  dx in time guaranteed by the mass conservation property of (7). It should 
be noted that, with periodic boundary conditions, this mass conservation property of 
(7) can never allow blow up in finite time since the latter implies that the total mass 
within the localized blow-up structure grows explosively to infinity in finite time. As 
such, our blow-up solution is a self-similar intermediate asymptotics in time for 
periodic boundary conditions and the construction in the next section is an analysis 
valid only for a localized position and for a certain intermediate interval in time. It 
should also be noted that a simple analysis of our self-similar blow-up solution yields 
the result that the volume within the structure will reach infinity in finite time - a clear 
violation of the mass conservation property with finite periodic boundary conditions. 
In contrast, the blow-up solutions of Pumir et al. (1983) for falling films on a plane and 
of Rosenau et al. (1992) tend to approach zero volume at they grow since their width 
shrinks faster than their amplitude growth. Our blow-up solution reaches a constant 
width and hence its volume scales as the amplitude. We will show that a ‘dimple’ 
constriction will eventually develop in front of our structure as the film thins and arrest 
the blow-up behaviour as it throttles the drainage of fluid into the structure. This small 
dimple is not considered in our leading-order construction of the blow-up solution. 
Even though our blow-up growth is a transient phenomenon, this explosive strongly 
nonlinear mechanism nevertheless greatly accelerates the growth of a particular wave 
crest and, in fact, permits amplitude growth to form drops. Its suppression therefore 
suggests that amplitude growth to form drops is impossible. We also show numerical 
evidence that the blow up will go to completion in finite time if there is an infinity of 
available liquid. 

Using the same single-harmonic initial condition h(x, 0) = 1 - 0.1 cos (2nx/L), we 
carried out a series of runs for various p values between 0.1 and 2.0. For ,8 < 1.2, the 
small-amplitude initial condition quickly evolves into a modulated periodic wavetrain 
with the wavelength close to A, according to linear stability theory. Some slight 
adjustment occurs when L is not an integer multiple of A, but the number of wave crests 
after the linear inception region is always equal to the integer immediately above or 
below L/A,. The inception region spans a timescale of order - 41nhi/P2 where h, is the 
initial amplitude. Within it, the wave amplitude grows exponentially as shown in the 
first ten units of time in figure 2(a) for p = 1. Immediately beyond it, the waves begin 
to steepen in front and develop a back shoulder, signifying a weakly nonlinear 
excitation of an overtone with wavelength $A,. The amplitude modulation due to the 
initial condition still persists, however, and the nonlinear convective effect begins to 
accelerate the larger waves. The relative speeds between the large waves are small. They 
collide and eventually overtake the smaller waves in front of them. However, its 
amplitude does not increase significantly as a result of these collisions. At the same 
time, smaller waves grow and interact with each other. The final result of the slow 
evolution is a train of soliton-like coherent structures with almost the same amplitude 
which interact indefinitely with each other like a soliton-soliton elastic collision. The 
coherent structure possesses a gently sloping back edge and a steep front edge preceded 
by some small ‘bow waves’ reminiscent of the solitary-wave coherent structures 
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FIGURE 2 .  (a) The amplitude h,  evolution of one wave crest into a coherent structure of ,8 = 1 < ,8, 
with a domain size of L = 50. The exponential growth in the linear inception region is followed by 
an algebraic growth period which includes coalescence with another wave crest and an asymptotic 
saturated interval where the slight fluctuations are due to decaying coherent structure interaction. (b) 
The final coherent structure compared to the numerically constructed solitary wave at ,8 = 1. 

observed in inertia-dominated falling films (Pumir et al. 1983; Chang 1986, 1989). 
However, unlike those coherent structures, the lateral dimension of the present 
structure scales as ,@, that is the width remains of order R (or the Rayleigh wavelength 
A,) in the dimensional units. Since the height is scaled by the film thickness h, instead 
of R, the height of these coherent structures must be of the order c1 = A,/ho before 
they escape the long-wave description. Consequently, even though the height of the 
coherent structure increases with p, they remain within the region of validity of (7). A 
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FIGURE 3. (a) The evolution towards two bounded coherent structures for a single-harmonic initial 
condition of h(x, 0) = 1 -0.1 cos (2nxlL) with L = 50. The lines are separated by a time interval of 
At = 0.70 ranging from t = 50.55 to t = 72.25. (b) The asymptotic evolution towards a periodic train 
of coherent structures for an initial condition of h(x,O) = 1 -0.005cos(2~x/L) with L = 50 for t~ 
(71.5, 90.5) with At = 1.0. 

typical large-time evolution ( t  > 40) of this coherent-structure dominated interface 
beyond the linear inception region is shown in figure 3(a) for /3 = 1.0. The snap shot 
of a fully developed coherent structure is shown in figure 2(b). In figure 3(a), the five 
wave crests (L/h,  - 5.6) beyond the inception region have coalesced into two coherent 
structures which evolve into a closely bounded pair (a two-hump solitary wave) that 
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FIGURE 4. The local blow-up behaviour at ,8 = 1.6 between the interval t ~ ( 7 . 0 ,  16.7) for L = 50. 

propagates steadily without further evolution. The remaining domain away from the 
two localized structures is relatively flat with a slight modulation but linear inception 
of small waves does not occur over a timescale much larger than the inception time. 
The number of final coherent structures changes, however, with different initial 
condition. In figure 3 (b), the final evolution for the same condition as figure 3 (a)  but 
with the initial condition h(x, 0) = 1 -0.005 cos (27cxlL) yields four coherent structures 
which are spaced equally to form a periodic train. The interaction among the coherent 
structures is not necessarily stationary in a moving frame at large time. Dynamic 
interaction with continuously varying separation has been observed to persist 
indefinitely. However, once relaxed into the coherent structures, the structures do not 
coalesce and the interaction seems to be the type that neighbouring structures attract 
and repel alternately (Kawahara & Toh 1988). The unique feature of the dynamics for 
p < 1.2 is then the formation of such distinctive, indestructible coherent structures 
whose interaction dominates the final evolution. Since the amplitudes of these coherent 
structures are finite and unique for a given p value less than 1.2, this final evolution 
involves little vertical growth but consists entirely of lateral interaction. The nonlinear 
evolution beyond the linear inception region of the amplitude of a single crest towards 
the saturated amplitude of a coherent structure is shown in figure 2(a)  and figure 5(a). 
A slow algebraic growth is evident and the decaying oscillations at large time are due 
to dynamic interaction among the coherent structures. 
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FIGURE 5. (a) Slow growth of the amplitude h, of a typical wave crest at /3 = 1 .O without a self-similar 
region for the single-harmonic initial condition with an amplitude of 0.1. The eventual saturated 
amplitude h, is a weak function of the domain size L. (b) Accelerated growth of the amplitude h, of 
the dominant structure at /3 = 1.8 with a self-similar region for the same initial condition which 
converges to a local finite-time blow-up solution as L increases. The shift is due to the increasing 
inception interval with increasing wavelength of the single-harmonic initial condition. The saturated 
amplitude increases with L linearly. 

The evolution is dramatically different when the same initial condition is used for p 
larger than approximately 1.6 as shown in figure 4. The dynamics of the linear 
inception region evolves as before. However, beyond the inception region, instead of 
coalescing with others to form saturated coherent structures, one of the wave crests of 
the periodic wave train begins to grow very rapidly. It dominates the other crests and, 
in fact, reduces the height of the other crests as fluid drains into this localized growing 
structure. The growth in amplitude h, of this localized structure behaves as 
hi3 - ( t  - to) as shown in figure 5 (b) for /3 = 1.8 where the amplitude increased by a 
factor of 2 in a short time interval of about 2 units. In contrast, the crest height 
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FIGURE 6 .  Snap shots of the interfacial shape at indicated points in figure 5. For ,8 = l.O(a) the snap 
shots are at t = 10.5, 23.75, 40.25, 50.55, 71.05 and 80.175 and for ,8 = 1.8(b) at t = 10.375, 11.00, 
12.0, 13.0, 13.5 and 14.5. The timescales are different by one order of magnitude. 
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FIGURE 7. (a) The algebraic growth during the blow-up interval of the maximum amplitude towards 
blow-up at t = t, for the initial condition h(x, 0) = 1 - 0.1 cos (2nxlL) for three p values larger than 
p, at L = 50. The estimate oft, from the plots are also shown. The eventual deviations from the blow- 
up behaviour are removed in this figure. (b) The normalized curves for various p values for two 
different initial conditions : I.  h(x, 0) = 1 - 0.1 cos (2nxIL)  and 11. h(x, 0) = 1 - 0.2 cos (27cxlL). The 
slopes are e = 6.0 x and 4.9 x respectively. 

evolution for p < 1.0 shown in figure 5(a) does not demonstrate this self-similar 
growth and its fastest growth factor is only 1.3 over a much larger interval of 20 units! 
As a result, the growth of p = 1.8 is significantly faster by one order of magnitude as 
is evident from the timescales of figure 5.  More detailed snapshots of both growth 
processes are shown in figure 6 where the self-similar growth of a dramatically large 
structure for p = 1.8 is contrasted to the small identical coherent structures of p = 1 .O. 
Even at p = 1.8 with the largest domain size L, however, the self-similar intermediate 
asymptotic behaviour that leads to the large structure breaks down at large time as a 
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dimple develops in front of the structure and it becomes increasingly difficult to drain 
fluid through this small constriction. This dimple is already apparent in figure 6 and 
it deepens with further evolution. We believe the tail which departs from the self- 
similar growth in figure 5(b) is related to the lobe drainage mechanism through the 
dimple first studied by Hammond (1983). As L is increased, however, figure 5(b) 
suggests that the blow-up-like behaviour persists longer and the dimple does not 
develop as rapidly since there is more fluid available. The final saturated amplitude 
increases linearly with L, in contrast to the relative insensitivity of the final amplitude 
to L for /3 = 1.0 shown in figure 5(a). For p = 1.8, the saturated amplitudes are 
h, = 2.25, 3.50, 6.0 and 11.2 for L = 10, 20, 40 and 80. This again suggests that a true 
blow up will occur in finite time if an infinite domain is used or if an artificial boundary 
condition that allows infinitely fast transfer of liquid into the domain is used. The tails 
that deviate from the blow-up behaviour exhibit kinks which correspond to coalescence 
of the large structure with smaller saturated ones. Such coalescence hence also plays a 
role in the final evolution of the drop in addition to the lobe drainage mechanism of 
Hammond. Since Hammond’s lobes do not move owing to the absence of the mean 
flow term, coalescence is not observed in his analysis. Although the final coalescence 
and lobe drainage mechanisms contribute to the significant final increases in the crest 
height h,  of the growing structure as evident in figure 5 (b), they must be preceded by 
the intermediate blow-up interval. Without the blow-up behaviour, as is the case for 
lower values of /3, figure 5(a) indicates that the evolution is dominated by lateral 
interaction of the saturated coherent structures without amplitude growth. The 
intermediate blow-up interval is hence necessary for drop formation. This important 
interval possesses a self-similar property that allows the renormalization of all 
intermediate blow-up behaviour. Since to obviously depends on the initial condition, 
we have chosen to renormalize various blow-up solutions by using to as the origin of 
the time coordinate, that is using the timescale t - to, for any given run. The proper 
scaling of the blow-up interval is revealed by figure 7(b )  when this shifted timescale is 
used on the raw data of figure 7(a).  The amplitude blow up seems to be universal as 
t approaches to with a scaling of p2 

(22) 

where e = 6.0 x for the cosine initial condition with an amplitude of 0.1 from 
figure 7 but it varies with other initial conditions as shown in figure 7(b). In fact, even 
the profile of the blow-up structure away from the film approaches a constant shape 
if the ( t  - t,)-i growth is normalized away and the residual translation of the structure 
during the blow-up process is frozen by matching the maxima at various time as in 
figure 8(a).  The structure approaches the static solution (10) of the long-wave 
LaplaceYoung equation. It seems to evolve through the family of the unduloid 
solution with algebraic growth. 

We have also integrated (7) with numerous other initial conditions. In all cases, an 
approach towards a coherent-structure dominated interface occurs for p 5 1.2 and 
blow-up-like growth occurs at a single crest for 2 1.6. Between these two values, 
saturation at extremely large coherent structures occurs and it is difficult to discern 
whether a blow-up interval exists. Typical evolutions for /3 = 0.8 for a random initial 
condition whose local amplitude takes on a value between 0.85 and 1.15 are shown in 
figure 9(a) .  (The random initial condition is smoothed before numerical integration in 
time.) The accelerated growth at the larger value of ,8 = 1.8 is again evident with final 
amplitudes in excess of 4, although two large structures are now apparent, suggesting 
that the existence and non-existence of the intermediate blow-up phenomenon are 

(h-3//32) - e(t - to), 
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/ 
Equation (29) 

FIGURE 8. Approach of the transient blow-up solution for = 1.6 > /I, towards the static 
structure defined by equation (29). The asymptotic blow-up time is l o  = 17.4. 

independent of initial conditions. We have also used a family of solitary wave solutions 
to be constructed in a subsequent section as a family of initial condition for all /3. As 
shown in figure 10, all numerical integrations for /? < 1.2 yield saturated coherent 
structures while for /l> 1.6, a significant blow-up interval is observed. During this 
blow-up process, the interface h(x, t )  does not vanish at any location. It is easy to show 
from (7), as Pumir et af .  (1983) have shown for their equation, that a minimum of the 
interface can never touch the fibre unless h,, or h,,,, becomes singular such that the 
interface breaks into segments of piecewise continuous profiles. Singularity formation, 
corresponding perhaps to wave breaking, is also not observed. The combination of a 
large reservoir of fluid and a mean flow probably eliminate the possibility of dry patch 
formation. This is consistent with the experiment of Aul & Olbricht (1990) for an 
annular film within a capillary. With the introduction of a mean flow dry patches are 
not observed and instead, complete snap-off of the inner thread occurs as an occasional 
lobe sucks fluid from neighbouring lobes and blows up to form a fluid lens. This snap- 
off process is obviously related to the present drop formation process and one also 
expects a critical film thickness beyond which a lens can be formed. In fact, although 
the film is on the inside of a capillary instead of outside a fibre, this difference is 
negligible and we expect the evolution equation (7) and our prediction of the critical 
film thickness to be valid for the snap-off phenomenon. 
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FIGURE 10. The computed solitary wave solution branch and the predicted singularity at 1, = 1.413. 
The open circles at (,!I, c) represent saturated long-term dynamics when the solitary wave solution 
with speed c is used as the initial condition at the given ,!7 while the closed circles represent observed 
self-similar intermediate asymptotic growth with the same initial conditions. 

3. Finite-time blow up and solitary waves 
The local and transient self-similar intermediate blow-up behaviour observed in our 

numerical study occurs as fluid drains preferentially into a single localized structure. 
The scaling properties of this phenomenon demonstrated in figures 7 and 8 suggest that 
this local blow-up behaviour can be described by an intermediate self-similar 
asymptotic solution to (7). We assume this finite-time blow up occurs at t = 0 at the 
location x = 0 and seek its shape and evolution behaviour. Defining a similarity 
independent variable y = x tPb  and a transformation of dependent variable 
h(x, t )  = ( t l - "~  ( y ) ,  where a and b are positive, we shall find the appropriate similarity 
transform to reduce (7) to an ordinary differential equation for ~ ( y ) ,  as Pumir et al. 
(1983) have done for their equation. Direct substitution yields 

- a7 - byyy + [l t l-2a-b+173 + plt l -3a-zb+l  7 3 ltl-3a-4b+1737 ] = 0. 
YYY Y 

Consequently, a self-similar solution exists near blow up ( t  + 0-) if a = f and b = 0. The 
convective term [Itl$~'(x)], vanishes as t+O- and the resulting equation for ~(x) is 
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and the interface behaves as 
h(x, t) - l t l -$ (~) .  

This then confirms the ( t  - to)-: scaling for the blow-up process in figure 5(a). Even the 
universal scaling of figure 7 (b) and (22) is now clear since the self-similar equation (23) 
is invariant to the transformation 7 +- and x + pix. Thus, h, = 7, t-3 - e-i,t%t-i 
where the constant e is determined from figure 7(a )  and (22) to be 6.0 x lop3 for the 
cosine initial condition with 0.1 amplitude. Another value of e corresponding to a 
different initial amplitude is listed in figure 7(b). In general, the constant e must be 
determined from the transient version of (23). Its solution then requires matching with 
the initial condition. Hence, this constant is a function of the initial condition in 
general as demonstrated in figure 7(b). 

While the determination of e requires information about the initial condition and 
hence a general analysis is not possible, the leading-order structure of the blow-up 
solution can still be deciphered. Mean flow effects have been eliminated from equation 
(23) and it represents a balance between the evolution term -+v and static capillary 
forces. It essentially describes the algebraic evolution in time through the family of 
unduloidal static solutions of the Laplace-Young equation. In the original variables, 
the behaviour as t --f 0 of the blow-up process is then described by 

ah 
- + [ph3h, + h3h,,,], = 0, 
a t  

which is simply the equation studied by Hammond for the case without mean flow. 
Consequently, the blow-up solution is entirely driven by the static capillary forces 
which drain fluid from the surroundings to a single crest. Because the draining process 
is slow relative to the timescale for the linear Rayleigh instability used to scale time in 
(7), the growing crest evolves in a quasi-steady manner and takes on shapes described 
by (10) to leading order which approaches the fibre surface tangentially (see figures 4 
and 8). This suggests that 9 is large in (23) and the boundary conditions to the leading- 
order outer solution (away from the quadratic tangent points) are 

where 2 0  is the height of the blow-up solution at the maximum located at x = 0 and 
& g are the yet undetermined matching locations. (An analogous discussion on why 
these boundary conditions are appropriate for the leading-order equation can be found 
in $4 for the solitary waves.) It should be noted, however, that the boundary conditions 
in (26) correspond to the asymptotic behaviour of the ‘outer’ solution of the large 
structure ~ ( x )  as it approaches the film. It cannot describe the small interfacial 
structures near the film nor does it take into account the boundary conditions of the 
domain. For example, the dimple that develops in figure 6, which eventually causes the 
deviation from the blow-up behaviour, obviously escapes the description of (26). 
Hence the constructed blow-up solution only pertains to a single wave crest and it is 
not a global blow-up solution in time for the original equation (7). In fact, as we have 
mentioned, (7) cannot exhibit blow up with periodic boundary conditions because of 
mass conservation. Consequently, one should look at the constructed solution as a 
necessary intermediate nonlinear growth mechanism for a local wave crest that follows 
the initial linear exponential growth and precedes the lobe drainage mechanism when 
the dimple is sufficiently deep to dominate the final evolution. Matching of the self- 
similar interval with these two regions would be a difficult task as we discuss below. 
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Since D is large, the leading-order outer solution can be easily shown to be 

such that the evolution term -$y is negligible. The solution to (27) which satisfies (26) 
is simply the long-wave LaplaceYoung solution (lo), 

where the contact points are located at x = k CT = rt XI@. The leading-order blow-up 
solution is then 

(29) 
where D is obviously related to e in (22). We note that D is still unknown and it must 
be determined with higher-order matching which involves the evolution term -fy and 
the transient convective term neglected in (23). This now requires information on the 
initial condition and is hence impossible to do in general. Nevertheless, the quasi- 
steady evolution through the unduloidal solutions of the Laplace-Young equation is 
evident from (29) and is confirmed by our numerical study in figure 8. 

Whether the blow-up solution h, can be approached locally by a particular wave 
crest, that is whether D can be determined after carrying out a proper matching with 
the initial conditions, is not guaranteed, however. In fact, we expect the nonlinear 
mean-flow effect contained in the asymmetric convective term to prevent an approach 
to the blow-up solution. In this connection, we consider yet another self-similar solution 
H(z) to (7). This solution corresponds to a stationary solitary wave which propagates 
at speed c without changing its profile. This profile approaches the flat-film solution 
H = 1 at both ends. It has a localized structure resembling the coherent structure in 
figure 2 with a capillary-force-dominated outer region and two matching regions with 
the flat film where both surface tension and viscous forces are expected to be dominant. 
It is described by the following equation in the moving coordinate with translation 
velocity c, z = x- ct, 

$(x) = D(1 +COS&), (28) 

h,(x, t )  = D( 1 + cos @x)Ill-i, 

H3H,,,+PH3Hz = 1 -H3+c(H- l), (30 a) 

with boundary conditions 
H(z++co) = 1, 

where (7) has been integrated once in the moving frame and the integration constant 
is determined by the condition that H =  1 must be a solution. The mean-flow 
convective term is now contained in 1 - H 3  while c(H- 1) corresponds to the viscous 
term owing to the propagation of the solitary wave. We are interested in large solitary 
waves which travel fast (c  9 1) and we shall carry out on expansion in c-5 in the next 
section. We shall show that they correspond to the coherent structures in figures 2 and 
3 and that it is possible to have extremely large solitary waves with dimensions of the 
fibre radius R at a limiting P value. They are possible owing to the mean-flow term. 
This will be shown to occur when H - O(ci) and z - O(1) such that the outer region 
of the solitary wave is again described by the long-wave Laplace-Young equation to 
the leading order, 

d 
dz 
-vH3H,+H3H,,,] = 0. 

The leading-order outer solution of the solitary wave solution (away from the thin film) 
is then 

(32) H = H,[ 1 + cos ,&(x - ct)] 
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within the outer region confined by the two contact points z ,  = +n/@ in the moving 
frame. Like D of the blow-up solution (29), H, must be obtained from higher-order 
matching at the contact points. Unlike the blow-up solution, however, this steady 
matching is possible and will be carried out in the next section. 

The resemblance of the two leading-order self-similar solutions in (29) and (32) is 
important. Both are possible attractive intermediate asymptotic solutions to a 
particular wave crest with their own domains of attraction but with very different 
behaviour - one blows up in finite time to leading order until higher-order terms due 
to film thinning become important and one translated without growth. Actually, a 
true solitary wave in an infinite domain is unstable and hence has no domain of 
attraction because of the extended flat film region. We are actually referring to 
attractors (see figure 3 )  which are dominated by solitary-wave-like coherent structures. 
We shall show subsequently that the unstable solitary wave can generate a countable 
infinite family of coherent-structure-dominated asymptotic solutions, a subset of which 
do have finite domains of attraction and hence compete locally at a particular wave 
crest with the blow-up solution. For now, however, we shall consider the solitary wave 
as an attracting asymptotic solution for simplicity. Its resemblance to the blow-up 
solution suggests that they compete directly at a specific wave crest and that both 
cannot be attracting. Consider the blow-up solution at a particular instant in time t 
before blow up such that D 1tl-f is identical to H ,  of (32) which is always possible for 
a sufficiently large H,. The profile at that instant can then continue to evolve upwards 
in the blow-up process. Alternatively, since it also satisfies (32) with t = 0, it can also 
translate as a solitary wave. This is obviously impossible and the blow-up solution and 
a solitary wave solution cannot both be attracting for a given p. In all our numerical 
studies, we find that the solitary wave is always the chosen one and the blow-up 
solution is never reached. Figure 5(a)  for p = 1.0 clearly shows the dominance of the 
solitary-wave solution over the blow-up solution which is evident in figure 5(b). This 
then implies that if the solitary wave solution exists, it will always rapidly dominate and 
eliminate the blow-up behaviour. We then seek to determine the critical p, beyond 
which solitary waves do not exist as a condition for prolonged blow up into drops. As 
we shall demonstrate, solitary waves exist as a bounded, steady solution because the 
mean flow balances the capillary growth in the moving coordinate. This saturation is 
only possible if the solitary wave translates at a specific velocity. It is hence the same 
physical mechanism that prevents blow up. We have, however, replaced the difficult 
task of determining D in (29) through matching with the initial condition with the task 
of estimating H, and c in (32) by matching with the two steady viscous films on both 
sides of the solitary wave. We expect the solitary wave amplitude H,@) and speed c@) 
to increase as /3 increases. At a critical p,, the capillary force is too strong to be arrested 
by the mean-flow effects and we expect both H, and c to approach infinity (see figure 
10). 

Although the solitary-wave solution is strictly unstable, other self-similar solutions 
that are attractive can be generated from the solitary-wave solution. Some of these 
solutions correspond to stationary solutions in a moving frame which satisfy (30a) but 
not necessarily (30 b). The existence of these subsidiary stationary solutions with 
structures resembling the true solitary wave can be shown by use of the Sil’nikov 
theorem from dynamical systems theory (Chang et al. 1993a). Equation (30a) for 
stationary waves can be converted into a three-dimensional dynamical system 
(Ratulowski & Chang 1989), 

by the transformation (ul, uz, UJ = ( H -  1, H,, HZz). We note that the flat-film solution 
u, =Au;c ,P) ,  (33)  
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FIGURE 11. The scalings of the solitary wave with respect to the wave velocity c and the analogue 
homoclinic orbit in the phase space. 
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FIGURE 12. The computed solitary wave speeds in figure 7 near ,8 = compared to the derived 

asymptotic behaviour shown as a straight line. 

( H -  1, H,, Hzz) = (0, 0,O) becomes now a fixed point of this dynamical system and the 
solitary-wave solution a homoclinic orbit that connects to this fixed point (see figure 
11 for a schematic and figure 13 for some of our constructed homoclinic orbits/solitary 
waves). Linearization of the dynamical system about the fixed point yields a Jacobian 
whose spectrum is described by the characteristic equation 

h3+/3h-(c-3) = 0. (34) 
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FIGURE 13. The numerically constructed family of solitary waves (a) and homoclinic orbits (b) .  

For c-  3 > 0 ,  which is always true since the solitary waves travel faster than the linear 
phase speed 3 (see Chang 1989), it is easy to show that one root of (34) is always real 
and positive and the other two roots are complex conjugates with negative real parts. 
Hence the homoclinic orbit leaves the fixed point monotonically along a one- 
dimensional unstable manifold but returns to it in an oscillatory fashion on a two- 

6 FLM 261 
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dimensional stable manifold. Associating the flow in the phase space with the evolution 
of the solitary wave shape in z in the moving frame, one sees in figure 11 that the 
spectrum reflects the unique shape of the coherent structure observed on falling films, 
even in the inertia dominated case studied by Pumir et al. (1983) and Chang (1989). It 
has a gentle, monotonically increasing back edge preceded by a steeper front edge 
which is relaxed by a series of small, decaying bow waves which correspond to the 
complex eigenvalues. The asymmetric shape is a nonlinear effect away from the fixed 
point and is hence not related to the spectrum. It is in fact caused by the asymmetric 
convective term (A3), due to mean flow as we shall show in our nonlinear analysis in 
the next section. For small-amplitude solitary waves with c-3 small (we shall show 
that the speed of the solitary wave increases with amplitude), the complex pair is almost 
purely imaginary with frequency @. Hence, for small solitary waves, the bow waves 
decay slower and have longer wavelengths. In fact, as c-3 approaches zero, they 
correspond to the linear Rayleigh waves with wavelength A, of (1). These observations 
are consistent with our computed solitary waves in Figures 12 and 13. According to the 
Sil’nikov theorem (Glendinning & Sparrow 1984), if a homoclinic orbit exists at 
@,c) = @*,c*), then a countable infinite number of limit cycles and subsidiary 
homoclinic orbits, like multi-hump solitary waves, also exist in a local neighbourhood 
of @*,c*) in the parameter space provided if the real eigenvalue of (34) is larger in 
magnitude than the real part of the complex pair. Since the quadratic term in the 
characteristic polynomial is zero, the trace of the Jacobian vanishes and the above ratio 
is exactly 2 for any @*, c*). Consequently, the Sil’nikov condition is satisfied and at a 
given /3, we expect an entire family of stationary solutions, some periodic in z and some 
are multi-hump solitary waves, with speeds c close to the solitary wave speed. These 
solutions resemble the solidary waves - a periodic wave generated by this wave 
resembles a solitary wavetrain and a multi-hump solitary wave resembles two bounded 
solitary waves. All the subsidiary solitary waves are unstable but the periodic 
stationary waves can be stable. The subsidiary solitary waves can also give rise to 
periodic waves of their own. These stable stationary asymptotic states are evident in 
figure 3. Non-stationary attractors are also expected if the primary solitary wave exists. 
However, a general condition for their existence like the Sil’nikov theory is currently 
unavailable (see, however, the approaches of Kawahara & Toh, 1988 and Elphick, 
Meron & Spiegel 1988). It is then clear that, although the primary solitary wave itself 
is strictly unstable, it generates an infinite number of stable stationary and non- 
stationary attractors that compete with the blow-up solution. Since these subsidiary 
attractors have coherent structures resembling the solitary wave, their leading-order 
outer solutions are also described by (32) and they hence prevent the approach towards 
the blow-up solution by the same argument. 

4. Construction of solitary waves 
We seek an analytical solution of the nonlinear eigenvalue problem defined by the 

solitary wave equation (30). For a given /3 (or c), there is a unique c (or /3) such that 
the boundary conditions (30b) are satisfied and a solitary wave (homoclinic orbit) 
exists. That only one parameter needs to be varied (a codimension one phenomenon) 
is due to the fact that the homoclinic orbit corresponds to the intersection of a two- 
dimensional stable manifold with a one-dimensional unstable manifold in a three- 
dimensional phase space. The solitary-wave solution branch is hence a one-parameter 
family and one can represent it by cw). The wave speed c is expected to approach 
infinity at a critical /3, beyond which the solitary-wave branch ceases to exist (figure 10). 
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We note that this approach to infinity of c at a finite /3 is different from the inertia- 
dominated solitary waves studied by Pumir et al. (1983). In the latter case, the solitary 
wave branch also ceases to exist beyond a critical parameter value but the singularity 
there is a limit point variety. We shall exploit the particular singularity here to carry 
out an analytical estimate of p, and, in fact, to prove the existence of the singularity. 
Since both c and the wave amplitude approach infinity from below at p,, we expand 
P as 

(35) p - p, +pl c-y + p2 c 2 y  + p3 C 3 Y +  . . . , 
and use some power of l / c  as the expansion parameter. The power y will be determined 
from the scaling arguments. Even though the wave amplitudes are large near p,, 
conditions (30b) still stipulate that two thin-film regions exist in the front and back of 
the peak. There are hence three regions of interest near pc, the outer region I, near the 
wave peak and the two inner film regions I1 and I11 in figure 11, whose solutions must 
be matched in a matched asymptotic analysis at the overlap region. In the inner 
regions, His  of order unity and we expect axial curvature and viscous terms to balance 
in (30). (The mean flow term (1 - H 3 )  is much smaller than the viscous term c(H- 1) 
since c is large). This dominant balance stipulates that the axial lengthscale must be of 
the order c-3 and we define the inner coordinates 

y = ZCZ, (36) 
and write (30) as 

(37) 

where 

will be the expansion parameter. Expanding H in powers of 6, 

1 

H3H,,,+p62H3H, = P(1 -H3)+(H- l), 

6 = c-i < 1 

00 

H = C. 8Hi ,  

we find that the leading-order equation is the Bretherton equation (Bretherton 1961) 
owing to the dominant balance of viscous and axial capillary terms, 

i=O 

f i 0  = (Ha- l ) /H: ,  (38) 

where the dot denotes the derivative with respect to y .  
This equation applies both at the back film I1 and front film I11 (see also the phase 

space locations in figure 11). In the back, one integrates (38) away from the flat-film 
solution Ha = 1 in the positive y-direction whereas integration in the negative y -  
direction is required for the front. Equation (38) has been analysed using the 
Dynamical Systems language by Ratulowski & Chang (1989). The forward integration 
( y  + + a) quickly approaches the one-dimensional unstable eigen vector provided the 
initial condition is sufficiently close to the fixed point corresponding to Ha.= 1. It then 
follows the unstable eigen vector into the one-dimensional unstable manifold of (38) 
as nonlinear effects become important. Close to p,, the eigen vector and unstable 
manifold of (38) are good approximations of those for (37) shown in figures 11 and 
12(b). To eliminate the initial transient due to contributions from the stable complex 
modes, one can initiate the forward integration exactly on the unstable eigen vector or, 
equivalently, 

where Y and y is related by an arbitrary shift of origin 

Ha N 1 + e l  exp ( Y ) ,  (39) 

Y = y + r + .  (40) 
6-2 
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Using different initial amplitude ei ,  one obtains different asymptotic behaviour from 
(38) as Y++ GO. However, since the asymptotic trajectory in the phase space is 
invariant to shifts in y ,  these different trajectories collapse into one after shifting Y by 
a different interval r+ according to c: such that the origin of the new coordinate y lies 
at a particular point in the phase space which will be shown by matching to be located 
at the intersection of the asymptotic trajectory with the plane Hg = 0. We hence choose 
an arbitrarily small e l  (lo-* to be specific) and allow the matching to specify r+ and the 
origin. Other choices of €0' lead to other r+ but since the matching occurs at a specific 
location in the phase space and not in Y, the final results are invariant to the choice 
of €0'. This procedure for the forward (y++ GO) matched asymptotic analysis of the 
Bretherton equation was first formalized by Park & Homsy (1984). The asymptotic 
behaviour in the backward direction ( y  + - co) must be obtained with more care. 
Since the stable eigen space corresponding to (38) is two-dimensional, there are two 
eigenvectors with two independent amplitudes for initiating the integration in the 
negative y-direction. However, since the eigen values are complex conjugates, one of 
the amplitudes can be absorbed into a phase variable 8,, 

H, - l+e;exp(-+Y)cos ("2' - y+ 8,) > 

where Y is again related to the properly reduced coordinate y by 

Y = y + r - .  (42) 

The asymptotic behaviour at (y+-  co) is now determined by t'; and 8,. However, the 
final result is again invariant to c; provided the coordinate shift (42) is properly carried 
out and we choose c; to be lop4. 

Higher-order inner equations can be derived from (37), 

kl = (3 - 2H0) H J H ; ,  

k, = - /3 ,Ej ,+(3-2H,)H,/H~-3(2-H0)H~/H~.  (44) 

H I  = 0. (45) 

(43) 

The solution to the linear equation (43) which satisfies the boundary condition 
H,(y+f GO) from (30b) is simply 

This can also be confirmed more rigorously from the matching. The next non-trivial 
inner solution is then H, and its integration in the forward direction should be 
initialized with 

(46) 
corresponding to a generalized stable eigenvector for the linearized version of the 
coupled system (38) and (44). One expects the leading-order asymptotic trajectory of 
the forced (non-autonomous) system (44) will also be invariant to a coordinate shift 
provided the coordinate Y in (46) is the same as that used in the leading-order analysis 
of (39). Similarly, integration in the backward direction should be initialized by 

H,  - exp (- Y/2)cos (2/3 Y/2) [ -$/3,c;cos Oo-& 2/3/3, c; sin 19, +e;cos O,] 

ff2 - <t.; + Pe 6/3)  exp (Y) -& €0' Yexp (Y), 

+ exp ( - Y/2) sin (1/3 Y/2) [ - $ /3, €0 cos 8, + $pc c; sin 8, - c; sin @,I 
+ Yexp(- Y/2)cos(1/3 Y/2)[$?,e~cos0,-~2/3/3,c~sin8,] 

+ Yexp(- Y/2)sin(.\/3Y/2)[-$3,e;sin0,-~~/3/3,e;cos8,], (47) 
corresponding to the generalized stable eigenvectors of the linearized version of (38) 
and (44). In principle, there are two independent generalized eigenvectors represented 
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by two independent parameters €2 and B,, corresponding to the generalized versions of 
the two eigenvectors in (41) which are represented by E; and 8,. However, 8, will be 
shown to be specified by matching and the generalized eigenvector of (46) must then 
correspond to the specific eigenvector in (41). In the polar coordinates used, this can 
be accomplished by simply requiring 

8, = 8,. (48) 

By integrating (38) and (44) in both the forward and backward directions with initial 
conditions (39), (41), (46), (47) and for a given set of E ; ,  c;, 8,, e i  and e;, one obtains 

Ho(Y++oo) - a$+b$ Y+d: Y2, 

H,(Y++o~)-a:+b;  Y+(d'-'p 2 2 e 0  a')Y2--l/3 6 c O  b' Y3-IdipcY4. 12 0 

(49 a) 

(49 b)  

For the asymptotic behaviours of Ho, 4 is independent of the above five parameters 
(our integration yields d+ = 0.321 52 which is more accurate than Bretherton's and 
Ratulowski & Chang's values), a: and b; are functions of e: only and a;, b; and d; 
are all functions of €0 and 8,. For H,, all the coefficients in the +y-direction (with 
+ superscripts) are functions of e: and e t  while all coefficients in the ---direction are 
functions of e;,Bo and €2. One can replace e,' by r+ and e; by r- by using the coordinate 
shifts (40) and (42) to yield 

Ho - d$+6$y+d$y2, (50 a) 

H , - d $ + J +  y + d y y  " +  2 +6zy3+&y4, (50 b)  
where d$ = a'+b* r-+dt(r*)2,  + 

6; = b: +2d$ r', 
&* = a* +b* r* -Lp b'(rk)3+(d$ -A/j  a*)(r+)Z-Ld* 12 0 Pc(+>4, 

6: = 2(d' -Lp a * ) r k  -L/ j  bk ( r * ) z + + :  -L/j 3 c  dk 0 (r+)3 

2; = dk - L / j  a' -L/j  b* y*  -fd*P ( r * ) 2  

2 2  6 c O  2 c o  

2 2 c o  2 c 0  

2 2 c 0  2 e 0  O C  

2 6 c O  3 c O  6 p c  &$ , 6' = - L / j  b' -1p d* r +  = -1 

f* = -Ld*/j' 
12 0 C' 

In transforming to (50), we need to fix and SO at the specific small values of 
1 .O x The coefficients in (50) are then functions of rk, 8, and e,'. These 5 quantities 
along with /jC,/j1, p2 and p3 from (35) will be determined by the matching conditions. 
Higher-order inner equations are not required. 

The appropriate scaling for the outer region can be derived by scaling requirements 
necessary to match the asymptotic behaviour of the inner region. We first focus on the 
back matching with region 11. The inner region behaves quadratically, Ho N y2 ,  as 
y +cc here and this then requires the outer solution 0, to also behave quadratically with 
respect to the outer coordinate 2, Q0 - Z 2 .  This simply states that the leading-order 
outer solution touches the fibre wall tangentially in the overlap region where it matches 
the asymptotes of the inner solution. Assuming the scaling @ = Hc" and 2 = zcb in (30) 
where a and b are both non-positive since the length scales in the outer region are 
larger, one obtains from (30) 

(51) 
The requisite quadratic tangency of Q0 as it approaches zero to match the inner 
asymptotes in region I1 then stipulates that a = 2b-g if one substitutes the inner scale 
(36) into the asymptotic form @ - 2'. The two dominant capillary terms on the left- 

C-4a+3b03@zzz + p C - 4 a + b @ q  = 1 - c-3a03 + c(c-"@ - 1). 



162 S. Kalliadasis and H.-C. Chang 

hand side of ( 5 1 )  yield nonsensical solutions that cannot match both inner solutions if 
one dominates over the other. This then suggests a dominant balance of the axial and 
azimuthal curvature terms in the outer region which stipulates that b vanishes exactly 
and a = -$. The lateral lengthscale is then O(1) in the outer region and the vertical one 
is O(c+g) as shown in figure 1 1 .  Note that this apparently large aspect ratio does not 
violate the lubrication approximation because (30) has been rescaled. The appropriate 
equation for the outer region is then 

@3@,,, + /3@3@, = ss - s2Q3 + s3@ - 65, (52) 
where it is now clear from the outer equation (52) and the inner equation (37) that the 
expansion of p in (35) should be in powers of S = c-i, that is y = f. The leading-order 
outer equations are then, after expanding @ - @, + + S2@, + d3@,, 

@;(@b” + p, @;) = 0, 

@:(q + p, 0; + p, @;) = 0, 
@:(@; +p, 0; + 1 +pl @; +pp @;) = 0, 

@t(@5’ + p, @; + p1 0; + pp @; + p3 @;) = @,, 

(53 a> 

(53 b) 

(53 c) 

(53 d )  
where the primes here denote derivatives with respect to z.  We note that the + 1 term 
in (53 c) arises from the mean-flow term s2Q3 in (52). Since it is the mean flow effect that 
yields finite-amplitude solitary waves, we expect the analysis to at least extend to Q p  in 
region I. We shall require the solutions to (53) in this region to match asymptotically 
with the solutions (50) in regions I1 and 111, 

(54) 

(55)  

S2HO/+f CO) - @(z = 8 ~ ) .  

@,, = A ,  cos ( ( P J ~ Z )  + B, sin ( ~ , ) ~ z )  + D,, 
The solution of the leading order outer equation (53a) is simply 

and it defines the contact points 
Z’ = f4pC)i,  

which are the only locations where the requisite quadratic tangency can occur. They 
are essentially IfIa and z+ is (26) and (32), respectively, near the critical point p,. 
Expanding @, about thesecontact points and matching to H ,  one obtains 

(57 a, b) 

(57 d, 4 

@,(z-) + -  - - A , + D ,  = 0, Oh(.’) = -(/l,)+Bo = 0, 

-@;(z*) = $4, p, = d,T, - @b”(z’) = - B, pz, = 0, 
1 1 1 3  

2! 3! 3! 

1 I V + -  1 1 5  

-@, (z-) - - - A  p p  = -&pCd$, i @ T ( z k )  = --B,& = 0. 4! 4! 5! 5! (57e,f)  

Consequently, @, = ~ [cos ((p,)”) + 13, r:) 
where from (57c), 

d, = 4 = 4 = 0.321 52. (59) 
This is simply the symmetric static solution to the Laplace-Young equation in (32) 
with H, = (2d,/P,) and zero contact angles. The quantity p, is still undetermined from 
this leading-order matching but 0, can now be specified from (59)  which stipulates that 
the leading-order curvatures of the inner asymptotes in regions I1 and I11 are identical 
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owing to matching with the symmetric outer solution with identical expansions at the 
two contact points z+. For our initial condition with the fixed amplitude e; = lop4, the 
asymptotic quadratic coefficient d; in the - y-direction, unlike the universal 
d,+ = 0.32152 in the +y-direction, is a single-valued function of 8, only. Consequently, 
(59) allows us to determine Oo numerically to be 

(60) 8, = - 1.7206 radians. 

Without solving for Q1 explicitly, we first carry out the matching to yield 

q z f )  = 0, @;(z') = 607, (61 a, b)  

where the condition H ,  = 0 has been invoked. The only possible solution Q1 to (53b) 
that satisfies all the boundary conditions above is 

@, = 0. 

PI = 0 
This then immediately implies that 

and allows the determination of the two shifts rf from (61 b)  and (61f), which both 
stipulate 6,' vanish exactly, 

This is equivalent to Bretherton's original insight that the matching should occur at the 
minimum of the asymptotic parabola in (49a), namely 6: = 0, where the origin of the 
y-coordinate should lie. For e$ = lop4, the coordinate shifts are found to be r+ = 9.061 
and Y- = - 15.597 with Oo given by (60). We have solved for O,, Pl and r' and it 
remains to determine P,, Pz and P3 (as well as e,' from the inner equation and the 6 
coefficients Ai, Bi and Di (i = 2 and 3) from the Q2 and Q3 outer equations) from the 
matching conditions for Q Z  and Q3. 

The second-order outer equation (53 c), unlike the leading-order equation (53 a), is 
not symmetric with respect to z --f - z and it accounts for the steepening of the front 
seen in the solitary waves. Its solution is 

Q2 = A 2 c o s ( ( ~ c ) ~ ~ ) + B 2 ~ i n ( ( p c ) ~ ~ ) + D 2  

rf = -b$/2do. (64) 

- Z I P ,  - P z  @o(z)lPc, (65) 

(66 a, b) 

and matching with H yields 
+ - A -  Q2(z-) - a;, @;(.') = 0, 



(67f) 
1 
-(-B2A++0PcP2zd 5! = APC. 

Subtracting the two versions of (67a) at the two contact points z+ ~ from each other 
yields our most important result 

where the values of 6; = 2.897 and 6; = -0.842 are obtained by integrating (38) with 
amplitudes eof = e; = and do given by (60) in the initial conditions (39) and (41). 
(The shifts r * ,  determined in the leading-order matching, are also involved.) This /3, 
can only be determined after using Q2 where mean-flow effects first appear. 

Equations (67 c) and (67 e) are identical and equations (67 d )  and (67f) yield the same 
result. Subtracting the two versions of (67d) at the two contact points from each other 
yield 

Imposing this on (53 c) for cP2, we conclude that, in contrast to the symmetric @,,,. Q2 

is not symmetric with respect to reflection in z.  It still touches the contact points 
tangentially as seen in (66b) and hence, like Q0, yields a zero contact angle. However, 
from (66a), the two contact points are not equidistant from the fibre surface. (The 
vertical shift 6; is positive while 6; is negative and the absolute values are not 
identical.) The mean flow effect (+ 1 term in (53 c)) is first felt at @, and it is cD2 that gives 
rise to the asymmetry of the coherent structures with a sloping back and a steep front. 
Since this asymmetry appears at one expects the solitary waves to become 
increasingly symmetric as P approaches P,. 

The remaining equations are used to determine A, ,  D,, B, and e z  . They are given by 

(70 a-c) 

The asymptotic coefficients of H, can now be determined. Like 6; and d:, which are 
independent of e i ,  d l  and 6; are independent of e l  provided e,' is fixed at the prescribed 
value of and the corresponding r+ shift is used. As e l  approaches zero, our 
numerical integration yields 

p2 = 0. (69) 

A ,  = 2d;//3, - &of, B, = - Pi:, D, = A ,  + 6; + z+/PC. 

2d: = 2.357, 6: = -3.046, (7 1 a, b) 
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which will be used for front and higher-order matching. For the asymptote as y --f - co, 
(67c) implies that the initial amplitude c; in (46) must be chosen such that 

2d; = -2.926. 

This is numerically found to be satisfied at 

which also yields 
s; = 5.0 x 10-4, 

b; = -8.148. 

(73) 

(74) 
Since PI and P, vanish exactly, we must go to @, to determine how the solitary wave 

branch c(P) decays from P,. We shall only resolve Q, near the contact points z+ where 
Q0 vanishes. Near these points, 

- 

@;+pc@; = -P3@;), 
with the solution 

Q, - A,  cos ((pel; 2) + B, sin (vc>t z> + D, 

(75) 

(76) 

Expanding Qj, in a Taylor series near z+ provide a set of matching conditions like 
(57), (61) and (66). They allow solutions of@,, A,, B,, D, and initial conditions for H3 
which are not necessary. Some of the matching conditions, such as the one 
corresponding to @,(z*), require the asymptotic behaviours of H,. However, the 
contact angle condition which yields P, is matched only to H,, 

@i(Z+)  - = 5;. (77) 

From (71 b) and (74), we see that Q3 provides the first non-trivial contact angles at the 
two contact points. More importantly, substitution of (76) into (77) yields 

$!13 A,, Z~ - B3(Pc)f = 6;. 

P, = &6; - 6f)/2zdo = - 4.242. 

(78) 

(79) 

Subtracting the two equations in (78) as before, one obtains 

This then provides the leading non-trivial expansion 
branch cv) near P,, 

4.242 
1.413-P' 

We have essentially carried out a matched asymptotic 
large homoclinic orbits. 

of the solitary wave solution 

(80) 

resolution of almost infinitely 
- 
We have also numerically traced the solitary wave solution branch. Our numerical 

scheme for the homoclinic orbit involves a numerical matching of the unstable 
manifold with a curve on the stable manifold. It is detailed in another application 
(Chang et al. 1993a) and we simply describe the results here. The constructed one- 
hump solitary wave solution branch is shown in figure 10 and it approaches infinity at 
P, = 1.41, which is in excellent agreement with the predicted value in (68). This critical 
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FIGURE 14. Comparison of the predicted /I, = 1.413 to the experimental data points (closed 
circles) of QuCrt for the first formation of drops as the film thickness is increased. 

/3 value clearly demarcates region with blow-up solutions from the saturated solutions. 
In figure 12, the numerically resolved speeds of the solitary waves are shown to 
approach the asymptotic expression of (80) near /Ic = 1.413. Since it is difficult to 
numerically construct infinitely large solitary waves, the theoretical expression in (80) 
is probably more accurate. A particular member of the solitary wave branch at 
/3 = 1.0 is shown in figure 2 and is satisfactorily compared to the observed coherent 
structure. The slight difference in height is because the coherent structure is aligned in 
a periodic train and hence corresponds to a periodic solution near the homoclinic orbit 
generated by the Sil’nikov mechanism instead of being the actual homoclinic orbit. 
Nevertheless, the solitary wave is a good approximation of a coherent structure in the 
periodic train. Several constructed members of the solitary wave branch are shown in 
figure 13 with their phase-space trajectories. The rapid increase in the height of the 
solitary wave as /3 approaches p, is evident. The decrease in the width of the outer 
region and in the wavelength of the bow waves and the increase in the decay rate of 
the bow waves with increasing p, predicted earlier, can also be seen. 

Finally, the predicted p, = 1.413 for the non-existence of the solitary wave branch 
corresponds to a critical film thickness of 

h, = 1.68R3HP (8 1) 

from (8) and this is favourably compared to Quiri’s experimental data for the 
formation of drops in figure 14. For /3 > /3,, solitary waves do not exist and drops are 
observed to form through the blow-up model while saturated waves are observed 
below p, as the solitary-wave generated coherent structure prevents the blow-up 
phenomenon. The slight deviation at large R of our theory from the experimental data 
is because the lubrication approximation that leads to (7) is only valid if h, < R. Since 
h, scales as R3H-2, the theory begins to break down at R - H, that is when the fibre 
radius exceeds the capillary length H. As R approaches H ,  inertia becomes important 
as shown in 3 1 and contributes to the observed slight deviation. 
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5. Summary and conclusion 
We have shown through numerical experiment that, after the linear inception region, 

all initial conditions below a critical p tend to approach an asymptotic interfacial 
dynamics dominated by solitary-wave-like coherent structures which do not involve 
amplitude growth of the wave crests. Above this critical p, amplitude growth of the 
wave crest continues and, in fact, accelerates after linear inception through a drastically 
different finite-time blow-up phenomenon dominated by a single ever-increasing static 
structure which eventually evolves into a drop on the fibre via other mechanisms. That 
the coherent structures created by mean-flow effects are generated by solitary waves 
allows us to estimate the critical /3 value by studying the existence of the solitary-wave 
solution branch. This solution branch approaches infinity at /3, and this allows an 
asymptotic determination of p, via an expansion in c-f. In fact, the argument that the 
solitary-wave-like coherent structure competes locally with the blow-up solution as 
attractors requires the solitary waves to be large. This may explain Pumir et d ’ s  
observation of inertia-driven two-dimensional waves on a plane. The solitary-wave 
branch for that case exhibits a limit point at a critical parameter value with a finite- 
amplitude singular solitary wave. Below this critical value, both saturated dynamics 
and blow up are observed, depending on the initial condition. It is the infinitely large 
solitary waves at /3 near /I, in our case that is responsible for the clear demarcation for 
all initial conditions shown in figure 10. The two distinct behaviours of the solitary- 
wave solution branch are due to the dominant nonlinearities. In our case, the 
saturating axial curvature terms (triggered by the mean flow at one lower order), has 
exactly the same order of nonlinearity as the azimuthal curvature driven growth term. 
This allows balance between the two terms even at infinitely large amplitudes. In an 
inertia-driven flow, the stabilizing axial curvature term has a much lower nonlinear 
term than the destabilizing inertia term. As a result, for a finite Reynolds number, an 
infinitely large solitary wave is not possible and the absolute removal of the blow-up 
solution as an attractor by the coherent structures does not occur since the two leading- 
order structures are not identical. Consequently, both saturated waves and blow up are 
possible for the inertia-driven instabilities even when the solitary wave exists. As 
mentioned before, the latter phenomenon is likely to be eliminated by the introduction 
of transverse capillary effects and drop formation on an inertia-dominated film may 
never occur. 

This work is supported by the Department of Energy through grant DE-FG02- 
92ER14269. We are grateful to Professor E. Demekhin and Mr. D. Kopelevich for 
their assistance in constructing the solitary waves in figure 13. We are also grateful to 
one of the reviewers for clarifying some details concerning the final evolution. 
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